

**SIDDHARTH INSTITUTE OF ENGINEERING AND
TECHNOLOGY (AUTONOMOUS)**

(Approved by AICTE, New Delhi & Affiliated to JNTUA, Ananthapuramu)
Siddharth Nagar, Narayananavam Road
Puttur -517583, Tirupati District, A.P. (India)

QUESTION BANK (DESCRIPTIVE)

Subject with Code: DC DRIVES (25EE2103)

Course & Branch: M.Tech - PE

Year & Sem: I-B.Tech & I-Sem

Regulation: R25

UNIT -I
CONTROLLED BRIDGE RECTIFIER (1-Φ & 3-Φ) WITH DC MOTOR LOAD

1	Explain the operation of a single-phase semi-converter feeding a DC motor load with neat diagrams.	[L2][CO1]	[10M]
2	Describe the effect of freewheeling diode on the performance of a single-phase full converter drive.	[L2][CO1]	[10M]
3	Illustrate the voltage and current waveforms of a single-phase full converter with a highly inductive load.	[L2][CO1]	[10M]
4	Derive the expression for the average output voltage of a single-phase full converter feeding a DC motor.	[L3][CO1]	[10M]
5	Calculate the input power factor and DC motor current for a single-phase full converter with given parameters.	[L3][CO1]	[10M]
6	Compare the performance of semi-converter and full-converter drives under continuous and discontinuous conduction modes.	[L4][CO1]	[10M]
7	Analyze the torque-speed characteristics of a DC motor when operated with a three-phase full converter.	[L4][CO1]	[10M]
8	Evaluate the performance improvement achieved by adding a freewheeling diode in a three-phase converter drive.	[L5][CO1]	[10M]
9	Illustrate the operation of a three-phase semi-converter feeding a DC motor	[L4][CO1]	[10M]
10	Develop a MATLAB/Simulink model to study the performance of a single-phase full converter-fed DC drive.	[L5][CO1]	[10M]

UNIT- II**THREE PHASE NATURALLY COMMUTATED BRIDGE CIRCUIT AS A RECTIFIER
OR AS AN INVERTER**

1	Explain the operation of a three-phase bridge rectifier with resistive load using circuit diagram and waveforms.	[L2][CO2]	[10M]
2	Describe the function of each component in a three-phase converter circuit.	[L2][CO2]	[10M]
3	Discuss the operation of a three-phase converter with highly inductive load and draw relevant waveforms.	[L2][CO2]	[10M]
4	Explain how a three-phase converter operates as an inverter with appropriate gating sequence.	[L3][CO2]	[10M]
5	Derive the average and RMS output voltage expressions for a three-phase full converter.	[L3][CO2]	[10M]
6	Compute the input current and power factor for a converter with given load and firing angle.	[L3][CO2]	[10M]
7	Compare the characteristics of converter operation in rectification and inversion modes.	[L4][CO2]	[10M]
8	Analyze the effect of source inductance on the output voltage and commutation overlap.	[L4][CO2]	[10M]
9	Evaluate the performance improvement achieved by using shunt capacitor compensation in converter circuits.	[L4][CO2]	[10M]
10	Design a three-phase naturally commutated converter capable of operating in both rectifier and inverter modes for regenerative braking.	[L5][CO2]	[10M]

UNIT- III PHASE CONTROLLED DC MOTOR DRIVES

1	Explain the working principle of a three-phase fully-controlled converter-fed DC motor drive.	[L2][CO3]	[10M]
2	Define phase control and list its advantages in DC drives.	[L1][CO3]	[10M]
3	Describe the control circuit of a three-phase converter drive with a neat block diagram.	[L2][CO3]	[10M]
4	Explain the steady-state speed-torque characteristics of a DC drive under different firing angles.	[L2][CO3]	[10M]
5	Derive the transfer function of a converter-fed DC motor drive system.	[L3][CO3]	[10M]
6	Calculate the speed and torque of a converter-fed DC motor under specified load and firing angle conditions.	[L3][CO3]	[10M]
7	Compare the performance of one-quadrant and two-quadrant converter-controlled DC drives.	[L4][CO3]	[10M]
8	Analyze the effect of varying converter firing angle on armature current and torque response.	[L4][CO3]	[10M]
9	Evaluate the performance of a three-phase converter-fed DC drive with respect to efficiency and power factor.	[L4][CO3]	[10M]
10	Develop a closed-loop control strategy for a phase-controlled DC motor drive using digital control techniques.	[L5][CO3]	[10M]

UNIT- IV CURRENT AND SPEED CONTROLLED DC MOTOR DRIVES

1	Explain the function of current and speed controllers in a DC drive system.	[L2][CO4]	[10M]
2	Define the roles of current reference generator and feedback loop in drive control.	[L2][CO4]	[10M]
3	Describe the working of a closed-loop speed control system for a DC motor using block diagram.	[L2][CO4]	[10M]
4	Explain the function of filters in the speed feedback loop and their impact on stability.	[L2][CO4]	[10M]
5	Design a proportional-integral (PI) speed controller for a given DC motor drive.	[L4][CO4]	[10M]
6	Derive the dynamic model equations of a current-controlled DC motor drive.	[L4][CO4]	[10M]
7	Compare open-loop and closed-loop speed control systems in terms of response and stability.	[L4][CO4]	[10M]
8	Analyze the harmonic torque components and their effect on performance of converter-fed DC drives.	[L4][CO4]	[10M]
9	Evaluate the stability of a speed-controlled DC drive using Bode or root locus method.	[L4][CO4]	[10M]
10	Design and simulate a digital current controller for closed-loop DC motor speed control using MATLAB.	[L5][CO4]	[10M]

UNIT- V CHOPPER CONTROLLED DC MOTOR DRIVES:

1	a	Explain the principle of operation of a DC-DC chopper used for motor speed control.	[L2][CO5]	[10M]
2		Define four-quadrant operation of a chopper-fed DC drive with neat waveforms.	[L2][CO5]	[10M]
3		Describe the working of a step-down chopper feeding a DC motor with voltage and current waveforms.	[L3][CO5]	[10M]
4		Discuss the operation of a chopper in regenerative braking mode.	[L2][CO6]	[10M]
5		Derive the expression for average armature voltage and current in a chopper-fed DC motor.	[L3][CO6]	[10M]
6		Calculate the duty ratio and chopper frequency for a given motor voltage and speed requirement.	[L4][CO5]	[10M]
7		Analyze the current and torque waveforms in a chopper-controlled DC drive under motoring and braking conditions.	[L4][CO5]	[10M]
8		Develop the detailed model of a current controller in chopper-controlled DC drives	[L4][CO5]	[10M]
9		Evaluate the effect of chopper frequency and duty cycle on torque pulsations and efficiency.	[L5][CO5]	[10M]
10		Explain the operation of hysteresis current controller used in DC chopper drives	[L4][CO5]	[10M]

PREPARED BY

**Dr J Gowrishankar ,
Professor ,
Department of EEE**